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ABSTRACT 

The selection of basis functions in the moment method analysis of rectangular patch antenna plays 

an important role in determining the rate of convergence of the numerical results, and that an 

improper choice can lead to erroneous results. In this work, three types of basis functions are used 

to expand the unknown surface current distribution on the rectangular patch. The first type of 

basis functions is formed by the set of TM modes of a rectangular cavity with magnetic side walls. 

The second type of basis functions employs sinusoidal functions with the proper edge singularity. 

The third type of expansion basis functions consists of combinations of Chebyshev polynomials, 

with weighting factors to incorporate the edge condition. The numerical convergence for these three 

types of basis functions is discussed in detail. The advantages and disadvantages brought by the use 

of each type of these basis functions are also given. KEY WORDS: rectangular patch; Galerkin’s method; 

basis functions; numerical convergence. 

 

1. INTRODUCTION 

The electric field integral equation method implemented in the Fourier transform domain has 

been extensively used in the last two decades as an efficient way to predict the electromagnetic 

behaviours of the rectangular microstrip patch antenna. The Galerkin method is considered to be 

the standard procedure for solving this class of integral equations. It gives the fundamental 

quantity of interest, namely the electric current distribution on the patch surface from which all 

the other required antenna parameters can be obtained [1]. In the literature, different types of 

basis functions have been successfully used to expand the unknown patch current. However, the 

questions pertaining to the choice of the basis functions (modes) for each type of expansion 
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basis functions have not been addressed in much detail, except in the context of convergence of 

the integrals involved in the application of the moment method both in the spatial and spectral 

domain approaches and strictly from a mathematical point of view [2]. In this work, three types 

of basis functions are used to expand the unknown surface current distribution on the 

rectangular patch. The first type of basis functions is formed by the set of TM modes of a 

rectangular cavity with magnetic side walls. The second type of basis functions employs 

sinusoidal functions with the proper edge singularity. The third type of expansion basis 

functions consists of combinations of Chebyshev polynomials, with weighting factors to 

incorporate the edge condition. The numerical convergence for these three types of basis 

functions is discussed in detail. 

We begin first by discussing briefly, in Section 2, the application of Galerkin’s method in 

the Fourier transform domain to the full-wave computation of the complex resonant frequencies 

of rectangular microstrip patches. The selection of basis functions is discussed in Section 3. The 

numerical convergence using the three types of basis functions, mentioned above, is discussed 

in Section 4. The advantages and disadvantages brought by the use of each type of these basis 

functions are also given. Concluding remarks are summarized in Section 5. 

 

2. FORMULATION OF THE PROBLEM 

Considered here is a rectangular microstrip patch with dimensions (a, b ) along the two axes 
 

(x, y ) , respectively. Let the thickness and the relative permittivity of the substrate be denoted 

by d
1 
and 

r 1 
, respectively. In the Fourier transform domain, the tangential electric field on the 

plane of the patch due to the patch currents J
x 
and  J

y
 can be written, in terms of the electric 

 

field Green’s function, as follows: 

                                                              

                                                          

Q QE Jxx xyx x

JQ QE
yyx yyy

     
     = 
     
     

                                              (1) 
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where the Green’s function Q
i j

 is the contribution of a j-directed electric current element at the 

 

microstrip to the electric field  E
i
 at the microstrip plane. Note that the electric field Green’s 

 

functions in the spectral domain can be easily obtained. To solve for the surface current density 

on the patch by the method of moment, the first step is to expand the surface current densities  

by a linear combination of the expansion functions as follows: 

 

J
x 

= an 
J

xn 
n =1 

(2a) 

 
 

J 
y 
=  bm 

J
ym 

m =1 

(2b) 

 

where  a
n
 and  b

m
 are the unknown coefficients of the expansion functions J

xn 
and J

ym 
, 

 

respectively. Substituting the Fourier transform of equation (2) into equation (1) followed by 

testing with the same set of basis functions that was used in the expansion of the patch current, 

one arrives at the following matrix equation: 

 

                                         
( ) ( )

( ) ( )

( )

( )

11
12

1

21 22
1

0
N M NN N

M
M N M M

Z Z a

bZ Z

 


 

 
  

 =  
   

 

                                    (3) 

 

 

 

where 

                                         ( )11 ( ). ( )xx xq s xn s x y
qn

Z Q J k J k dk dk
+ +

− −

= −                                      (4a) 

 

                                          ( )12 ( ). ( )xy xq s ym s x y
qm

Z Q J k J k dk dk
+ +

− −

= −                                     (4b) 

 

                                          ( )21 ( ). ( )yx yl s xn s x y
ln

Z Q J k J k dk dk
+ +

− −

= −                                      (4c) 

 

                                           ( )22 ( ). ( )yy yl s ym s x y
lm

Z Q J k J k dk dk
+ +

− −

= −                                      (4d) 

 

 

For the existence of a non-trivial solution of (3), we must have 
 

det [ Z( f )] = 0 (5) 

N 

M 
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where Z  is the entire matrix in (3). Muller’s method which involves three initial guesses is  

used for root seeking of (5) to obtain the operating frequency and the quality factor of the 

antenna. 

3. CHOICE OF BASIS FUNCTIONS 

When using the method of moments to solve electromagnetic problems, a crucial factor is the 

appropriate choice of basis functions [3]. In this work, three types of basis functions are used to 

expand the unknown surface current distribution on the rectangular patch. The first type of basis 

functions is formed by the set of TM modes of a rectangular cavity with magnetic side walls. 

These current modes are given by 

 

                                         

1 2

2 1

( , ) sin ( ) cos ( )
2 2

( , ) sin ( ) cos ( )
2 2

xn

ym

n na b
J x y x y

a b

m mb a
J x y y x

b a

    
= + +   

   

    
= + +   

   

                          

( )

( )

6a

6b

The second type of basis functions employs sinusoidal functions with the proper edge 

singularity. These basis functions are given by 

                             

( )

1 2

2 2

1
( , ) sin ( ) cos ( )

2 2/ 2
xn

n na b
J x y x y

a bb y

    
= + +   

   −

                     (7a) 

                              
( )

2 1

2 2

1
( , ) sin ( ) cos ( )

2 2/ 2
ym

m mb a
J x y y x

b aa x

    
= + +   

   −

                     (7b) 

The third type of expansion basis functions consists of combinations of Chebyshev polynomials, 

with weighting factors to incorporate the edge condition. These basis functions are given by 

 

                                         
2

2 1 2

1 (2 / )
( , ) . (2 / ). (2 / )

1 (2 / )
xn n n

x a
J x y U x a T y b

y b

−
=

−
                             (8a) 

 

                                         
2

2 2 1

1 (2 / )
( , ) . (2 / ). (2 / )

1 (2 / )
ym m m

y b
J x y U y b T x a

x a

−
=

−
                             (8b)
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where T
n 
() and U

n 
() are the nth-order Chebyshev polynomials of the first and second kind, 

 

respectively [4]. 

 
 

4. NUMERICAL RESULTS AND DISCUSSION 

In this Section, the numerical convergence of our calculated resonant frequencies and quality 

factors, using the three types of basis functions mentioned in Section 3, are studied. The 

considered mode is the TM01 mode. The patch dimension is a  b = 1.9 cm  2.29 cm and the 
 

substrate has a relative permittivity 
r1

= 2.32 and thickness d
1 
= 1.59 mm . 

In Table I, the convergence of the numerical results using cavity modes basis functions 

are investigated with respect to the number of basis functions. The results indicate that the 

choice of the couples (n
1
, n

2
) and (m

1
, m

2
) should not be done in an arbitrary way, but it is 

 

subjected to the two following criteria: 
 

✓ n
1    

and  m
1    

must be both even. 

 

✓ n
2    

and  m
2   

must be both odd. 
 

If we use an additional couple which does not check the conditions above, the size of the matrix 

impedance increases without improvement of convergence. Note that the study of convergence 

reported in the open literature [5, 6] has not been done in a suitable way, since these two 

conditions have not been respected during the expansion of the current in series of basis 

functions. The numerical results also indicate that only one basis function in the  y  direction 

suffices to obtain the resonant frequency with acceptable accuracy. The theoretical frequency 
 

obtained with ( N = 0, M =1) agrees very well with the measured data given in [7] with a small 
 

shift of 0.019 GHz . The advantages brought by the use of one basis function are 

 
✓ A considerable saving of the computation time because only one term in the impedance 

matrix is to be evaluated. 

✓ Muller’s method is shown to converge to the correct frequency for a large choice of initial 

guesses. 
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In Table II, the convergence of the numerical results using sinusoidal basis functions with 

edge singularity are studied with respect to the number of basis functions. It is seen that the 

conditions imposed on the choice of the sinusoidal basis functions with edge singularity are 

similar to those imposed on the selection of the sinusoidal basis functions without edge 

singularity. Now, one basis function is unable to ensure the convergence of the numerical 

results. An additional mode in the  y  direction being necessary. This last is defined by the 

couple (2,1) . Note that the computation time required to obtain the complex resonant frequency 

when sinusoidal basis functions with edge singularity are used is longer than that necessary for 

the calculation of the complex resonant frequency when sinusoidal basis functions without edge 

singularity are used for the following reasons: 

 

✓ Three elements in the impedance matrix are to be evaluated. 

 

✓ The length of the integration path required to reach numerical convergence when the 

sinusoidal basis functions with edge singularity are used is 250 k
0 
, while the semi-infinite 

integral is truncated at an upper bound of  60 k0 when the sinusoidal basis functions  

 

without edge singularity are used. 

 

✓ The Fourier transform of the sinusoidal basis functions without edge singularity is 

expressed in term of the cardinal sine function (see Appendix A), while the Fourier 

transform of the sinusoidal basis functions with edge singularity is expressed in term of 

the Bessel function of the first kind of order zero (see Appendix A). It is well known that 

the numerical computation of Bessel functions is time-consuming. 

 

(see Appendix A). 
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5. CONCLUSIONS 

Three sets of basis functions have been used to expand the unknown surface current distribution 

on the rectangular patch. The numerical convergence for these three sets of basis functions has 

been discussed in detail. The results obtained have indicated that it is not necessary to consider 

the edge singularity to obtain fast numerical convergence of the complex resonant frequency for 

a rectangular microstrip structure. For each set of basis functions, we have shown that the choice 

of the modes should not be done in an arbitrary way, but it is subjected to some criteria. These 

criteria have been given for each set of basis functions. Through a thorough examination of the 

convergence question, we conclude that the set of basis functions issued from the magnetic wall 

cavity model are the best set of basis functions to be used in the moment method analysis of 

rectangular patch antenna because it ensure rapid convergence of the Galerkin method with a 

good exactitude of the results. 

APPENDIX A 

This appendix regroups details of calculation of the Fourier transforms of the three types of 

basis functions used in the approximation of the unknown current on the rectangular patch. The 

Fourier transforms of J
xn 

and J
ym 

are 

 

~ 
+  +  

J
xn 

=   
−  −  

J
xn 

exp(−i k
x 
x − i k

y 
y ) dx dy (A.1a) 

 

~ 
+  +  

J
ym 

=   
−  −  

J
ym 

exp(−i k
x 
x − i k

y 
y ) dx dy (A.1b) 

 

A.1. Cavity modes basis functions 

Substituting equation (6a) into equation (A.1a) and equation (6b) into equation (A.1b), and 

 
using Moivre’s rule, we obtain the following expressions for 

~ 
J

xn 
and 

~ 
J

ym 
: 

 

~ ~ ~ 
J

xn 
= I

x x 
(k

x 
)  I

x y 
(k

y 
) (A.2a) 

 

~ ~ ~ 

J 
ym 

= I 
y x 

( k
x 

)  I 
y y 

( k
y 

) (A.2b) 
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with 

1 1 1 1

i 
exp( i / 2) sinc( / 2 / 2) exp(i / 2) sinc( / 2 / 2)    (A.3a)

2
x x x x

a
I n k a n n k a n= −   +  −   −   

2 2 2 2exp( i / 2) sinc( / 2 / 2) exp(i / 2) sinc( / 2 / 2)
2

x y y y

b
I n k b n n k b n = −   +  +   −     (A.3b)

1 1 1 1exp( i / 2) sinc( / 2 / 2) exp(i / 2) sinc( / 2 / 2)   (A.4a)
2

yx x x

a
I m k a m m k a m= −   +  +   −   

 

2 2 2 2

i
exp( i / 2) sinc( / 2 / 2) exp(i / 2) sinc( / 2 / 2)

2
y y y y

b
I m k b m m k b m = −   +  −   −       (A.4b) 

 

 

 

A.2. Sinusoidal basis functions with edge singularity 

Substituting equation (7a) into equation (A.1a) and equation (7b) into equation (A.1b), and 

using Moivre’s rule in conjunction with the following integral [8]: 

                                                  0
2

exp( )
( )

1 ( / )

w

w

i x
dx wJ w

x w

+

−


=  

−
                                  (A.5) 

 

we obtain the following expressions for  Jxk and Jym  

 

                                                      ( ). ( )xn xx x xy yJ I k I k=                                               (A.6a) 

 

                                                      ( ). ( )ym yx x yy yJ I k I k=                                               (A.6b) 

where 
xxI and yyI  are similar to those defined in equations (A.3a) and (A.4b), and 

 

                                

2
2

0 2 0 2

( )
( / 2 / 2) ( 1) ( / 2 / 2)

2

n
n

xy y y

i
I J k b n J k b n

− 
 = +  + − −                       (A.7a) 

                               

1
1

0 1 0 1

( )
( / 2 / 2) ( 1) ( / 2 / 2)

2

m
m

yx x x

i
I J k a m J k a m

− 
 = +  + − −                        (A.7b) 

 

In equations (A.5), (A.7a), and (A.7b), 0 (.)J is the Bessel function of the first kind of order zero. 

 

A.3. Chebyshev polynomials basis functions with edge condition 

 

Substituting equation (8a)  into  equation (A.1a) and equation (8b) into equation (A.1b), and 

 

using the following integrals [8]: 

 

                                       
2

( / )exp( )
( )

1 ( / )

w
nn

n

w

T x w i x
dx wi J w

x w

+

−


=  

−
                                   (A.8a) 
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2

1

1
1 ( / ) ( / )exp( ) ( )

w
n

n n

w

n
x w U x w i x dx i J w

+

+

−

+
−  =  


                 (A.8b) 

 

we obtain the following expressions for  
xnJ  and  ymJ  

 

                                      
1 2

2 1
11 2

1( )
. ( / 2) ( / 2)

4 / 2

n n

xn n x n y

x

nab i
J J k a J k b

k a

+

+

+−
=                            (A.9a) 

 

                                  
1 2

2 2
12 1

1( )
. ( / 2) ( / 2)

4 / 2

m m

ym m y m x

y

mab i
J J k b J k a

k b

+

+

+−
=                          (A.9b) 

Using the following property for the Bessel function of the first kind: 

 

                                                  1 1

( ) 1
( ) ( )

2

n
n n

nJ x
J x J x

x
− += +                                           (A.10) 

 

equations (A.9a) and (A.9b) become  

 

                       

1 2
2

21 1 2

( )
( / 2) ( / 2) ( / 2)

8

n n

xn n x n x n y

ab i
J J k a J k a J k b

+

+

−
 =  +                (A.11a) 

 

                     

1 2
2

22 2 1

( )
( / 2) ( / 2) ( / 2)

8

m m

ym m y m y m x

ab i
J J k b J k b J k a

+

+

−
 =  +             (A.11b) 
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Table I. 

Convergence pattern of the resonant frequency and quality factor with respect to the number of 

cavity modes basis functions; 

a  b = 1.9 cm  2.29 cm , 
r1

= 2.32 , d
1
=1.59 mm . 

Modes used in the x direction Modes used in the y direction Resonant frequency 

(GHz) 

Quality 

factor 
N (n1, n2) M (m1, m2) 

0    1 (0,1) 4.1231 36.346 

5 (1,0), (1,1), (1,2), (2,0), (2,2) 1 (0,1) 4.1231 36.346 

1 (2,1) 1 (0,1) 4.1087 36.762 

0    5 (0,1), (0,2), (1,1), (1,2), (2,2) 4.1231 36.346 

0    2 (0,1), (2,1) 4.1195 37.333 

5 (1,0), (1,1), (1,2), (2,0), (2,2) 5 (0,1), (0,2), (1,1), (1,2), (2,2) 4.1231 36.346 

1 (2,1) 2 (0,1), (2,1) 4.1336 35.792 

2 (2,1), (2,3) 4 (0,1), (2,1), (0,3), (2,3) 4.1151 35.824 

4 (2,1), (2,3), (4,1), (4,3) 6 (0,1), (2,1), (0,3), (2,3), (4,1), (4,3) 4.1181 35.579 

 

Table II. 

Convergence pattern of the resonant frequency and quality factor with respect to the number of 

sinusoidal basis functions with edge singularity; 

a  b = 1.9 cm  2.29 cm , 
r1

= 2.32 , d
1
=1.59 mm . 

Modes used in the x direction Modes used in the y direction Resonant frequency 

(GHz) 

Quality 

factor 
N (n1, n2) M (m1, m2) 

0    1 (0,1) 4.1842 36.878 

5 (1,0), (1,1), (1,2), (2,0), (2,2) 1 (0,1) 4.1842 36.878 

1 (2,1) 1 (0,1) 4.0821 39.426 

0    5 (0,1), (0,2), (1,1), (1,2), (2,2) 4.1842 36.878 

0    2 (0,1), (2,1) 4.1163 36.840 

5 (1,0), (1,1), (1,2), (2,0), (2,2) 5 (0,1), (0,2), (1,1), (1,2), (2,2) 4.1842 36.878 

1 (2,1) 2 (0,1), (2,1) 4.1323 35.742 

2 (2,1), (2,3) 4 (0,1), (2,1), (0,3), (2,3) 4.1090 35.533 

4 (2,1), (2,3), (4,1), (4,3) 6 (0,1), (2,1), (0,3), (2,3), (4,1), (4,3) 4.1042 35.564 
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